HIS | EsT

ECOLE SUPERIEURE DE TECHNOLOGIE
UNIVERSITE HASSAN Il DE CASABLANCA

Ecole Supérieure de Technologie de Casablanca

Département (Génie Informatique

Framework Python-Django
Construction d’Applications Web Scalables

Support de cours

Pr. Moad Hicham Safhi

Département Génie Informatique
Email : h.m.sathiQgmail.com
Website : https://sathi.me

Derniére mise a jour : 9 janvier 2026

mailto:h.m.safhi@gmail.com
https://safhi.me

Framework Python-Django

Table des matiéeres

1 CHAPITRE 1 : INTRODUCTION AU FRAMEWORK DJANGO 2
1.1 CONTEXTE ET DEFINITIONS FONDAMENTALES 2
1.2 ARCHITECTURE MVT - LE C(EUR DE DJANGO 2
1.3 INSTALLATION ET PREMIERS PAS 3
1.4 LES COMPOSANTS CLES EXPLIQUES 5
1.5 LE LANGAGE DE TEMPLATES DJANGO (DTL) 8

2 CHAPITRE 2 : LES APPLICATIONS DJANGO, MODULARITE ET
REUTILISATION 11
2.1 POURQUOI DECOUPER EN APPLICATIONS? 11
2.2 PROJET vs APPLICATION : LA DIFFERENCE 11
2.3 CREER UNE APPLICATION : LA COMMANDE STARAPP 12
2.4 ENREGISTRER L’APPLICATION DANS LE PROJET 12
2.5 EXEMPLE COMPLET : CREATION D'UNE APPLICATION BLOG 13
2.6 BONNES PRATIQUES POUR LES APPLICATIONS 17
2.7 LES APPLICATIONS FOURNIES PAR DJANGO 17
2.8 L’ORM DJANGO : LA BASE DE DONNEES SANSSQL 17
2.9 LINTERFACE D’ADMINISTRATION o, 19
2.10 AUTHENTIFICATION ET SECURITE 20
2.11 PAGINATION - GERER LES LONGUES LISTES 21
2.12 MIDDLEWARE; LE SYSTEME DE FILTRES 292

3 CHAPITRE 3 : DJANGO REST FRAMEWORK, CREER DES APIS RES-
TFUL 24
3.1 POURQUOI CREER UNE API? i 24
3.2 QUEST-CE QUE REST? . . . o o oo s 24
3.3 POURQUOI DJANGO REST FRAMEWORK (DRF)? 25
3.4 LES COMPOSANTS PRINCIPAUXDEDRF o i 26

4 CHAPITRE 4 : TESTS AVANCES; TESTS D’INTEGRATION ET TESTS
DE PERFORMANCE 29
41 POURQUOI TESTER SON CODE? oottt 29
4.2 LES DIFFERENTS TYPES DE TESTS o o, 29
4.3 EXECUTER LES TESTS o o, 30

4.4 CONCLUSION ET PERSPECTIVES 31

Framework Python-Django Pr. Sathi - ESTC

1 CHAPITRE 1 : INTRODUCTION AU FRAME-
WORK DJANGO

1.1 CONTEXTE ET DEFINITIONS FONDAMENTALES

1.1.1 Qu’est-ce qu’un framework web ?

Imaginez que vous devez construire une maison. Vous pourriez fabriquer chaque brique, chaque
fenétre, chaque porte vous-méme. Ou vous pourriez utiliser des éléments préfabriqués et des
outils spécialisés qui accélerent la construction. Un framework web, ¢’est comme cette boite a

outils compléte pour construire des applications web.

Sans framework, vous devriez réécrire les mémes fonctionnalités a chaque projet : gérer les
connexions a la base de données, traiter les formulaires, assurer la sécurité. Avec un framework,

ces fonctionnalités sont déja construites et testées.

1.1.2 Pourquoi Django spécifiquement ?

Django est un framework “batteries included” - toutes les piles sont incluses. Quand vous

installez Django, vous obtenez immédiatement :

— Un systeme de gestion de base de données (ORM).
— Une interface d’administration automatique.

— Un systeme d’authentification des utilisateurs.

— Une protection contre les attaques courantes.

— Un systeme de templates pour générer du HTML.

Des entreprises comme Instagram, Pinterest et Spotify utilisent Django pour gérer des millions
d’utilisateurs. Si c’est assez bon pour eux, c’est probablement assez bon pour vos projets!
Django est :

— Demandé : Beaucoup d’entreprises recherchent des développeurs Django. -Stable :
Existe depuis 2005, avec un support a long terme.
— Bien documenté : Une des meilleures documentations dans le monde open source.

— Communautaire : Une communauté active et accueillante.

1.2 ARCHITECTURE MVT - LE CEUR DE DJANGO
1.2.1 Comprendre MVT (Modéle-Vue-Template)

Django utilise une architecture appelée MVT, qui ressemble beaucoup au MVC mais avec des

noms différents :

Modele : C’est la représentation de vos données. Si vous construisez un blog, vos modeéles
seraient “Article”, “Auteur”, “Commentaire”. Le modele dit & Django comment stocker et

récupérer les données dans la base de données.

Framework Python-Django Pr. Sathi - ESTC

Vue : C’est le cerveau de votre application. La vue recoit une requéte web, décide quoi faire
avec, et renvoie une réponse. Par exemple, quand un utilisateur demande la page d’accueil, la

vue récupere les derniers articles et les prépare pour I'affichage.

Template : C’est I'apparence de votre site. Les templates sont des fichiers HTML avec des

espaces réservés pour les données dynamiques. Ils se chargent de I'affichage, pas de la logique.

1.2.2 Comment ces trois parties collaborent ?

Un utilisateur demande une URL (par exemple : /articles/)
Django trouve la vue associée a cette URL
La vue interroge la base de données via les modeles

La vue prend les données et les envoie a un template

A S

Le template génere du HTML qui est renvoyé au navigateur

Cette séparation rend votre code plus organisé et plus facile a maintenir.

1.3 INSTALLATION ET PREMIERS PAS

1.3.1 Préparer son environnement

Avant d’installer Django, créez un environnement virtuel. C’est comme une bulle isolée ol vous

installez Django sans affecter les autres projets Python sur votre ordinateur.

Pour créer et activer un environnement virtuel :

safhi@django-course:~$

safhi@django-course:~$ mkdir TP_DJANGO

safhi@django-course:~$ cd TP_DJANGO/
safhi@django-course:~/TP_DJANGOS
safhi@django-course:~/TP_DJANGOS python3 -m venv django_env
safhi@django-course:~/TP_DJANGOS source django_env/bin/activate
(django_env) safhi@django-course:~/TP_DJANCOS

(django_env) safhi@django-course:~/TP_DJANCOS

Framework Python-Django Pr. Sathi - ESTC

1.3.2 Installer Django

Une fois I'environnement activé :
| pip install django
Pour vérifier que Django est bien installé :

| django-admin --version

(django_env) safhi@django-course:~/TP DJANGOS
(django_env) safhi@django-course:~/TP_DJANGO$|pip install django
Collecting django
Downloading django-6.0.1-py3-none-any.whl.metadata (3.9 kB)
Collecting asgiref>=3.9.1 (from django)
Downloading asgiref-3.11.0-py3-none-any.whl.metadata (9.3 kB)
Collecting sqlparse>=0.5.0 (from django)
Using cached sqlparse-0.5.5-py3-none-any.whl.metadata (4.7 kB)
Downloading django-6.0.1-py3-none-any.whl (8.3 MB)
8.3/8.3 MB 4.7 MB/s eta 0:00:00
Downloading asgiref-3.11.0-py3-none-any.whl (24 kB)
Using cached sqlparse-0.5.5-py3-none-any.whl (46 kB)
Installing collected packages: sqlparse, asgiref, django
Successfully installed asgiref-3.11.0 django-6.0.1 sqlparse-0.5.5
(django_env) safhi@django-course:~/TP DJANGOS
(django_env) safhi@django-course:~/TP_DJANGOS| django-admin --version
6.0.1
(django_env) safhi@django-course:~/TP DIJANGCOS I

1.3.3 Créer votre premier projet

Un projet Django est comme un conteneur pour votre application web complete :

(django_env) safhi@django-course:~/TP_DJIANGOS
(django_env) safhi@django-course:~/TP_DIANGOS
(django_env) safhi@django-course:~/TP DJANGOS| django-admin startproject monprojet
(django_env) safhi@django-course:~/TP DIJANGOS
(django_env) safhi@django-course:~/TP_DJANGOS 1s
django_env monprojet

(django_env) safhi@django-course:~/TP_DIANGOS ||

Cela crée une structure de dossiers :

(django_env) safhi@django-course:~/TP _DJANGOS tree monprojet/
monprojet/
I: manage.py
monprojet
asgi.py
__init__.py
settings.py
urls.py
wsgi.py
2 directories, 6 files
(django_env) safhi@django-course:~/TP_DIJANGOS

monprojet/
manage . py # Outil de commande

monprojet/

Framework Python-Django Pr. Sathi - ESTC

__init__.py

settings.py # Configuration

urls.py # Routes URLs

asgi.py # Pour serveurs modernes
wsgi.py # Pour serveurs web

1.3.4 Lancer le serveur de développement

python manage.py runserver

(django_env) safhi@django-course:~/TP_DJANGO/monprojet
(django_env) safhi@django-course:~/TP7DJANGO/monprojetq python manage.py runserver
Watching for file changes with StatReloader

Performing system checks...

System check identified no issues (0 silenced).

You have 18 unapplied migration(s). Your project may not work properly until you apply the migrations for app(s): admin, auth, contentty
pes, sessions.

Run 'python manage.py migrate' to apply them.

January 20, 2026 - 20:50:22

Django version 6.0.1, using settings 'monprojet.settings’

Starting development server at http://127.0.0.1:8000/

Quit the server with CONTROL-C.

WARNING: This is a development server. Do not use it in a production setting. Use a production WSGI or ASGI server instead.
For more information on production servers see: https://docs.djangoproject.com/en/6.0/howto/deployment/

Ouvrez votre navigateur a 'adresse http://127.0.0.1:8000/

Vous devriez voir la page de bienvenue de Django! Ce serveur est uniquement pour le dévelop-

pement, pas pour la production.

3 Theinstall worked success! x = + ~ — o %

d <« - C QO O http;//127.0.0.1:8000 L] T n =

b

The install worked successfully! Congratulations!
View release notes for Django 6.0

You are seeing this page because DEBUG=True is in your
settings file and you have not configured any URLs.

django

O Django Documentation ¢» Tutorial: A Polling App 2o Django Community
“ Topics, references, & how-to's Cet started with Django Connect, get help, or contribute

1.4 LES COMPOSANTS CLES EXPLIQUES

Framework Python-Django Pr. Sathi - ESTC

1.4.1 Le fichier settings.py : Le centre de contrdle
Ce fichier contient toute la configuration de votre projet :

— La base de données a utiliser (SQLite pour le développement, PostgreSQL pour la
production).

GNU nano 7.2 monprojet/settings.py

Database
https://docs.djangoproject.com/en/6.0/ref/settings/#databases

DATABASES = {
'default': {
'"ENGINE': 'django.db.backends.sqlite3’,
'NAME': BASE_DIR / 'db.sqlite3',
}

-

— La liste des applications installées.

Application definition

INSTALLED_APPS = [
'django.contrib.admin’,
'django.contrib.auth’,
'django.contrib.contenttypes’,
'django.contrib.sessions',
'django.contrib.messages’',
'django.contrib.staticfiles',

—

— Les parametres de sécurité.

SECURITY WARNING: keep the secret key used in production secret!
SECRET_KEY = 'django-insecure-5js5abfnm7fq&s8n

SECURITY WARNING: don't run with debug turned on in production!
DEBUG = True

ALLOWED_HOSTS = []

— La langue et le fuseau horaire.

GNU nano 7.2 monprojet/settings.py

Internationalization
https://docs.djangoproject.com/en/6.0/topics/i18n/

LANGUAGE_CODE = 'en-us'
TIME_ZONE = 'UTC'
USE_I18N = True

USE_TZ = True

— Les chemins vers les templates et fichiers statiques.

Static files (CSS, JavaScript, Images)
https://docs.djangoproject.com/en/6.0/howto/static-files/

STATIC_URL = 'static/'

1.4.2 Les URLs : Le systeme de routage

Le fichier urls.py fait le lien entre les adresses web et votre code. C’est comme un réceptionniste

qui dirige les visiteurs vers le bon bureau.

Exemple simple :

Framework Python-Django Pr. Sathi - ESTC

from django.urls import path

from . import views

urlpatterns = [
path('', views.accueil), # La page d'accueil
path('articles/', views.liste_articles), # Liste des articles

path('article/<int:id>/', views.detail article), # Détail d'un article

1.4.3 Les vues : La logique métier

Une vue est une fonction Python qui recoit une requéte web et retourne une réponse. C’est la

que vous écrivez la logique de votre application.

Exemple d’une vue simple :

from django.http import HttpResponse
from django.shortcuts import render

from .models import Article

def accueil(request):
"""Affiche la page d'accueil"""

return HttpResponse("Bienvenue sur mon site!")

def liste_articles(request):
"""Affiche la liste des articles"""
articles = Article.objects.all() # Récupére tous les articles

return render(request, 'articles/liste.html', {'articles': articles})

1.4.4 Les templates : L’apparence du site

Les templates séparent la présentation de la logique. Au lieu de mélanger HTML et Python,
vous gardez le HTML dans des fichiers templates.

Un template simple :

<!DOCTYPE html>
<html>
<head>
<title>Mon Blog</title>
</head>
<body>
<hi1>Articles récents</h1>

Framework Python-Django Pr. Sathi - ESTC

{% for article in articles %}
<article>
<h2>{{ article.titre }}</h2>
<p>Publié le {{ article.date_publication|date:"d/m/Y" }}</p>
<p>{{ article.contenu|truncatechars:200 }}</p>
</article>
{) empty %}
<p>Aucun article pour le moment.</p>
{% endfor %}
</body>
</html>

1.4.5 Les modeéles : La structure des données

Les modeles définissent la structure de votre base de données en Python pur. Django traduit

ensuite ces modeles en instructions SQL.

Exemple de modele :

from django.db import models

class Article(models.Model):

"""Modéle représentant un article de blog"""

titre = models.CharField(max_length=200)

contenu = models.TextField()

date_publication = models.DateTimeField(auto_now_add=True)
models.ForeignKey('Auteur', on_delete=models.CASCADE)
models.BooleanField(default=False)

auteur

publie

def str (self):

return self.titre

Django crée automatiquement une table en base de données pour ce modele, avec toutes les

colonnes nécessaires.

1.5 LE LANGAGE DE TEMPLATES DJANGO (DTL)

1.5.1 Pourquoi un langage de templates spécial ?

Le Django Template Language (DTL) est congu pour étre suffisamment puissant pour créer
des pages dynamiques, mais suffisamment limité pour éviter de mettre trop de logique dans les

templates. C’est une question de séparation des responsabilités.

1.5.2 Les fonctionnalités principales du DTL

Framework Python-Django Pr. Sathi - ESTC

1.5.2.1 Les variables

Afficher une variable : { variable }

<h1>{{ titre _article }}</h1>
<p>Par {{ auteur.nom }}</p>

1.5.2.2 Les filtres

Transformer les variables :

<!-- Mettre en majuscules -->
<p>{{ textel|upper }}</p>

<!-- Formater une date -->
<p>{{ dateldate:"d F Y" }}</p>

<!-- Tronquer un texte -->
<p>{{ long_texte|truncatechars:100 }}</p>

1.5.2.3 Les balises

Les balises ajoutent de la logique aux templates :

<!I-- Conditions —-->
{’% if user.is_authenticated %}
<p>Bienvenue, {{ user.username }}!</p>
{% else %}
<p>Veuillez vous connecter.</p>
{% endif %2

<!-- Boucles —->

{)% for article in articles %}
<1i>{{ article.titre }}</1li>
{% empty %}
Aucun article disponible.</1i>
{% endfor 7%}

1.5.2.4 L’héritage de templates

C’est I'une des fonctionnalités les plus puissantes. Vous créez un template de base avec une

structure commune, et les autres templates héritent de cette base.

base.html (template de base) :

Framework Python-Django Pr. Sathi - ESTC

<IDOCTYPE html>
<html>
<head>
<title>{’, block titre %}Mon Site{) endblock %}</title>
</head>
<body>
<header>Mon en-téte commun</header>
<main>
{% block contenu %}
{% endblock %}
</main>
<footer>Mon pied de page commun</footer>
</body>
</html>

page_ accueil.html (template enfant) :

{% extends "base.html" %7}
{% block titre %}Accueil - Mon Site{’, endblock %}

{% block contenu %}

<h1>Bienvenue sur notre site</h1>

<p>Contenu spécifique a la page d'accueil...</p>
{% endblock %}

1.5.2.5 L’inclusion de templates

Pour réutiliser des morceaux de HTML & plusieurs endroits :

{% include "includes/menu.html" %}

1.5.3 Sécurité dans les templates

Django échappe automatiquement les caracteres dangereux dans les variables pour éviter les
attaques XSS (Cross-Site Scripting). Si vous avez besoin d’afficher du HTML siir, vous pouvez

utiliser le filtre |safe :
<p>{{ html_securisel|safe }}</p>

Mais utilisez-le avec prudence, seulement quand vous étes stir que le contenu est stir!

10

Framework Python-Django Pr. Sathi - ESTC

2 CHAPITRE 2 : LES APPLICATIONS DJANGO, MO-
DULARITE ET REUTILISATION

2.1 POURQUOI DECOUPER EN APPLICATIONS ?

Imaginez que vous construisez une maison. Vous ne mettez pas toute la plomberie, 1’électricité,
les murs et le toit dans un seul grand tas. Vous organisez par pieces : cuisine, salle de bain,

chambre. Chaque piece a une fonction spécifique.

Dans Django, c’est pareil. Une application est une piece fonctionnelle de votre projet. Par

exemple :

— Une application blog pour les articles et commentaires.
— Une application utilisateurs pour l'inscription et la connexion.

— Une application boutique pour les produits et commandes.
Cette organisation permet de :
Réutiliser des applications dans d’autres projets.

Maintenir le code plus facilement.

Travailler en équipe (chaque développeur sur une app différente).

= W o

Tester chaque fonctionnalité séparément.

2.2 PROJET vs APPLICATION : LA DIFFERENCE

2.2.1 Le Projet : La maison complete
Le projet est le conteneur global. Il contient :

— La configuration (settings.py).
— Les URLs principales (urls.py).
— Le serveur (wsgi.py, asgi.py).

Quand vous créez un projet avec startproject, Django crée ce conteneur.

2.2.2 L’Application : Une piece de la maison
Une application est un module autonome qui gere une fonctionnalité spécifique.

Analogie concréete :

MonSite/ Le projet (la maison)
blog/ Application blog (la cuisine)
utilisateurs/ Application utilisateurs (la salle de bain)
boutique/ Application boutique (le salon)
config/ Configuration (les fondations)

11

Framework Python-Django Pr. Sathi - ESTC

2.3 CREER UNE APPLICATION : LA COMMANDE STARAPP

2.3.1 Ou et comment lancer la commande ?

1. Assurez-vous d’étre dans le bon dossier :

| cd monprojet # Le dossier qui contient manage.py

2. Créez l'application :

| python manage.py startapp blog

(django_env) safhi@django-course:~/TP_DJANGO/monprojets
(django_env) safhi@django-course:~/TP_DIJANGO/monprojets 1s
db.sqlite3 manage.py monprojet

(django_env) safhi@django-course:~/TP_DJANGO/monprojets$
(django_env) safhi@django-course:~/TP_DJANGO/monprojets] python manage.py startapp blog
(django_env) safhi@django-course:~/TP_DJANGO/monprojets$
(django_env) safhi@django-course:~/TP_DJANGO/monprojets 1s
blog db.sqlite3 manage.py monprojet

(django_env) safhi@django-course:~/TP_DIANGO/monprojets I

2.3.2 Ce que la commande crée

Apres startapp blog, vous obtenez cette structure :

(django_env) safhi@django-course:~/TP_DJANGO/monprojets
(django_env) safhi@django-course:~/TP_DJANGO/monprojets tree blog/
blog/
— admin.py
—— aPPs.py
— __init__.py
— migrations
L— dinit__.py
— models.py
— tests.py
— views.py

2 directories, 7 files
(django_env) safhi@django-course:~/TP_DJANGO/monprojets$

2.4 ENREGISTRER L’APPLICATION DANS LE PROJET
2.4.1 Etape cruciale souvent oubliée !

Apres avoir créé une application, vous devez I'annoncer a Django. C’est comme dire a la mairie

que vous avez ajouté une nouvelle piece a votre maison.

Ouvrez settings.py dans votre projet et ajoutez le nom de 'application a INSTALLED_APPS :

12

Framework Python-Django Pr. Sathi - ESTC

CNU nano 7.2 monprojet/settings.py

Application definition

INSTALLED_APPS = [
'django.contrib.admin’,
'django.contrib.auth’,
'django.contrib.contenttypes’',
'django.contrib.sessions’',
'django.contrib.messages’',
'django.contrib.staticfiles’,
'blog’,

Pourquoi c’est important ? Sans cette étape :

— Django ne connait pas votre application.
— Les modeles ne sont pas créés en base de données.
— L’admin ne fonctionne pas.

— Les templates ne sont pas trouvés.

2.5 EXEMPLE COMPLET : CREATION D’UNE APPLICATION
BLOG

2.5.1 Etape par étape

1. Créer le projet (si pas encore fait) :

django-admin startproject monprojet

cd monprojet

2. Créer I’application blog :

python manage.py startapp blog

3. Enregistrer ’application dans settings.py :

monprojet/settings.py

INSTALLED _APPS = [
... applications par défaut
'blog', # AJOUT

]

4. Créer un modele dans blog/models.py :

13

Framework Python-Django Pr. Sathi - ESTC

GNU nano 7.2 blog/models.py

from django.db import models

Create your models here.

class Article(models.Model):
titre = models.CharField(max_length=200)
contenu = models.TextField()
date_publication = models.DateTimeField(auto_now_add=True)

def __str__(self):
return self.titre

5. Créer une migration (traduire le modele en SQL) :

| python manage.py makemigrations blog

6. Appliquer la migration (créer la table en base de données) :

| python manage.py migrate

(django_env) safhi@django-course:~/TP_DJANGO/monprojet$
(django_env) safhi@django—course:~/TP7DJANGO/m0npr0jet$Ipython manage.py makemigrations blog I
Migrations for 'blog':

blog/migrations/0001_1initial.py

+ Create model Article

(django_env) safhi@django-course:~/TP_DJANGO/monprojet$
(django_env) safhi@django—course:~/TP7DJANGO/monprojet$|python manage.py migrate I
Operations to perform:

Apply all migrations: admin, auth, blog, contenttypes, sessions
Running migrations:

Applying contenttypes.00@1 initial... OK

Applying auth.0001_initial... OK

Applying admin.@0@1_1initial... OK

Applying admin.00@2_logentry remove_auto_add... OK

Applying admin.00@3 logentry add action flag choices... 0K

Applying contenttypes.00@2 remove content type name... OK

Applying auth.0002_alter_permission_name_max_length... OK

Applying auth.@003_alter_user_email_max_length... 0K

Applying auth.@004_alter_user_username_opts... OK

Applying auth.0005 alter user last login null... OK

Applying auth.0006 require contenttypes 0002... 0K

Applying auth.0007_alter_validators_add_error_messages... 0K

Applying auth.@008_alter_user_username_max_length... 0K

Applying auth.0009_alter_user_last_name_max_length... 0K

Applying auth.001@ alter group name max length... 0K

Applying auth.0011 update_proxy_permissions... OK

Applying auth.@012_alter_user_first_name_max_length... 0K

Applying blog.®001_initial... OK

Applying sessions.0001 initial... OK
(django_env) safhi@django-course:~/TP_DJANGO/monprojet$
(django_env) safhi@django-course:~/TP_DJANGO/monprojet$

14

Framework Python-Django

Pr. Safthi - ESTC

3

File Edit View Tools Help

4 New Database #0Open Database 14

Database Structure | Browse Data = Edit Pragmas

[Create Table sCreate Index [Modify Table

Name
+ =] Tables (12)
» [= auth_group
[= auth_group_permissions
|=] auth_permission
[=] auth_user
[=] auth_user_groups

Type

integer
varchar(200)
Q contenu text
|2 date publication datetime
| Aincon adein b

» || diango_content_ktype

= django_migrations

» [= django_session

= sqlite_sequence
- Indices (15)
auth_group_permissions_group_id_b...
auth_group_permissions_group_id_p...
auth_group_permissions_permission...
auth_permission_content_type_id_2F...
auth_permission_content type id_co...

Execute SQL

| Delete Table

DB Browser for SQLite - db.sglite3

z @ Open Project 5 Save Project & Attach Database X Close Databasi

EiPrint

Schema =

CREATE TABLE
CREATE TABLE
CREATE TABLE
CREATE TABLE
CREATE TABLE

"auth_group” ("id" integer NOT NULL PRIMARY KEY AUTOINCREMENT, "name” varchar(150) NOT NULL UNIQUE)
"auth_group_permissions” ("id" integer NOT NULL PRIMARY KEY AUTOINCREMENT, "group_id" integer NOT NUL
"auth_permission” ("id" integer NOT MULL PRIMARY KEY AUTOINCREMENT, "content_type_id" integer NOT NUL
"auth_user” ("id" integer NOT MULL PRIMARY KEY AUTOINCREMENT, "password” varchar(128) NOT NULL, "last_|
"auth_user_groups” ("id" integer NOT NULL PRIMARY KEY AUTOINCREMENT, "user_id" integer NOT NULL REFER

"integer NOT NULL PRIMARY KEY AUTOINCREMENT, "titre” varchar(200) NOT NULL, "contenu

CREATE TABLE "blog_article” (i
integer NOT NULL

"titre” varchar(200) NOT NULL
"contenu” text NOT NULL
"date_publication” datetime NOT NULL

AR AT TADIE Tdinnnn admin o (MA® inbanac RIAT R DRI APV FFW AL ITAIR LSRR AERIT "abinck id" bauk R

Mohinck oo

CREATE TABLE "django_content_type” ("id" integer NOT NULL PRIMARY KEY AUTOINCREMENT, "app_label" varchar(100) NOT &
CREATE TABLE "django_migrations” ("id" integer MOT NULL PRIMARY KEY AUTOINCREMENT, "app” varchar(255) NOT NULL, "na
CREATE TABLE "django_session” ("session_key" varchar(40) NOT NULL PRIMARY KEY, "session_data" text NOT MULL, "expire_da
CREATE TABLE sqlite_seguence(name,seq)

CREATE INDEX "auth_group_permissions_group_id_b120cbf$" ON "auth_group_permissions” ("group_id")

CREATE UNIQUE INDEX "auth_group_permissions_group_id_permission_id_0cd325b0_uniq" ON "auth_group_permissions" ("gr
CREATE INDEX "auth_group_permissions_permission_id_84c5c92e” ON "auth_group_permissions” ("permission_id")

CREATE INDEX "auth_permission_content_type_id_2f476e4b" ON "auth_permission” ("content_type_id")

CREATE UNIQUE INDEX "auth_permission_content_type id codename_01ab375a_unig" ON "auth_permission” ("content_type |

5. Créer une vue dans blog/views.py :

GNU nano
from django.shortcuts import render

blog/views.py

from .models import Article
Create your views here.
def liste_articles(request):

articles = Article.objects.all()
return render(request, 'blog/liste.html’', {'articles': articles})

5. Créer un template dans blog/templates/blog/liste.html

GNU nano 7.2

blog/templates/

g/liste.html

<IDOCTYPE html>

<html>

<head>
<title>Mon Blog</title>

</head>

<body>
<h1=Articles du blog</hi=>
{% for article in articles %}
<h2={{ article.titre }}</h2>
<p>{{ article.contenu|truncatewords:50 }}</p=>
{% endfor %}

</body=>

</html>

5. Créer un fichier d’URLs pour I'application (blog/urls.py)

15

Framework Python-Django Pr. Sathi - ESTC

GNU nano 7.2 blog/urls.py

from django.urls import path
from . import views

urlpatterns = [
path('', views.liste articles, name='liste_articles'),

5. Inclure les URLSs de I’application dans le projet (monprojet/urls.py) :

GNU nano 7.2 monprojet/urls.py

URL configuration for monprojet project.

The “urlpatterns” list routes URLs to views. For more information please see:
https://docs.djangoproject.com/en/6.0/topics/http/urls/
Examples:
Function views
1. Add an import: from my_app import views
2. Add a URL to urlpatterns: path('', views.home, name='home')
Class-based views
1. Add an import: from other_app.views import Home
2. Add a URL to urlpatterns: path('', Home.as_view(), name="home')
Including another URLconf
1. Import the include() function: from django.urls import include, path
2. Add a URL to urlpatterns: path('bleg/', include('blog.urls'))
from django.contrib import admin
from django.urls import path, include
urlpatterns = [
path('admin/', admin.site.urls),
path('blog/', include('bleg.urls')),

5. Tester : python manage.py runserver puis allez sur http://127.0.0.1:3000/blog/

B | Monslog X |+ ~ - o x
O <« s O O http://127.0.0.1:8000/blog/ w7 L &g 5 =
Articles du blog

16

Framework Python-Django Pr. Sathi - ESTC

2.6 BONNES PRATIQUES POUR LES APPLICATIONS

2.6.1 Nommage des applications

— Singulier : blog pas blogs.
— Court et descriptif : utilisateurs pas gestion_des_utilisateurs_connectes.

— Pas de caracteres spéciaux : blog pas blog-app.

2.6.2 Quand créer une nouvelle application ?

Créez une nouvelle application quand : - La fonctionnalité peut étre nommée clairement (blog,
utilisateurs, boutique). - Elle a ses propres modéles (tables en base de données). - Elle pourrait

étre réutilisée dans un autre projet . - L’application actuelle dépasse 500 lignes de code.

2.7 LES APPLICATIONS FOURNIES PAR DJANGO

Django inclut déja plusieurs applications prétes a 'emploi. Dans INSTALLED APPS par défaut :

INSTALLED_APPS = [
'django.contrib.admin', # Interface d'administration
'django.contrib.auth', # Systéme d'authentification
'django.contrib.contenttypes', # Gestion des types de contenu
'django.contrib.sessions', # Gestion des sessions
'django.contrib.messages', # Systéme de messages

'django.contrib.staticfiles', # Gestion des fichiers statiques

Ces applications sont déja migrées (tables créées en base de données) quand vous lancez python

manage.py migrate.

E DB Browser for SQLite - db.sqlite3
File Edit view Tools Help

‘8NewDatabase ($Open Database _ i3 3 “0pen Project ([4Save Project @Attach Database % Close Database

‘ Database structure ‘ Browse Data | EditPragmas = Execute SQL

‘ ‘La(reate Table \ sCreate Index) EPrint

ane iye Scneina

~ [Tables (12)
» [auth_greup CREATE TABLE "2uth_group” ('id" integer NOT NULL PRIMARY KEY AUTOINCREMENT, "name” varchar(150) NOT NULL UNIQUE)
+ [auth_group_permissions CREATE TABLE "auth_group_permissions” ("id" integer NOT NULL PRIMARY KEY AUTOINCREMENT, "group_id” integer NOT NULL REFERENCES "auth_group’ ('id") |
» [auth_permission CREATE TABLE "auth_permission” ("id" integer NOT NULL PRIMARY KEY AUTOINCREMENT, "content_type_id" integer NOT NULL REFERENCES "django_content_typ
» [auth_user CREATE TABLE "auth_user’ ("id” integer NOT NULL PRIMARY KEY AUTOINCREMENT, "password" varchar(128) NOT NULL, "last_login® datetime NULL, "is_superuser
» [auth_user_groups CREATE TABLE "2uth_user_groups’ ("id” integer NOT NULL PRIMARY KEY AUTOINCREMENT, "user id" integer NOT NULL REFERENCES "auth_user” {"id") DEFERRAE
»] auth_user_user_permissions CREATE TABLE "auth_user_user_permissians” ("id" integer NOT NULL PRIMARY KEY AUTOINCREMENT, "user_id" integer NOT NULL REFERENCES "auth_user” ("id")
» [blog_article CREATE TABLE "blog_article” ("id" integer NOT NULL PRIMARY KEY AUTOINCREMENT, "titre" varchar(200) NOT NULL, "contenu” text NOT NULL, "date_publication®
»] django_admin_log CREATE TABLE "django_admin_log” ("id" integer NOT NULL PRIMARY KEY AUTOINCREMENT, "object_id" text NULL, "object_repr” varchar(200) NOT NULL, "action_
+ [diango_content_type CREATE TABLE "django_content_type” ("id" integer NOT NULL PRIMARY KEY AUTOINCREMENT, "app_label” varchar(100) NOT NULL, "model” varchar(100) NOT NU
+ [diango_migrations CREATE TABLE "django_migrations” (id" integer NOT NULL PRIMARY KEY AUTOINCREMENT, "app’” varchar(255) NGT NULL, "name” varchar(255) NOT NULL, "applie
» [E diango_session CREATE TABLE "django_session” ("session_key" varchar(40) NOT NULL PRIMARY KEY, "session_data" text NOT NULL, "expire_date” datetime NOT NULL)
» [sqlite sequence CREATE TABLE sglite sequence(name,seq)

2.8 L’ORM DJANGO : LA BASE DE DONNEES SANS SQL
2.8.1 Qu’est-ce qu’un ORM ?

ORM signifie Object-Relational Mapping. C’est une couche qui vous permet d’utiliser des objets

Python pour interagir avec votre base de données, au lieu d’écrire du SQL manuellement.

17

Framework Python-Django Pr. Sathi - ESTC

2.8.2 Avantages de ’ORM

1. Ecriture en Python pur : Pas besoin d’apprendre un langage différent pour chaque
base de données.

2. Sécurité : Protection intégrée contre les injections SQL.

3. Portabilité : Le méme code fonctionne avec SQLite, PostgreSQL, MySQL, etc.

4. Productivité : Moins de code a écrire et a maintenir.
2.8.3 Exemples d’opérations avec ’ORM

2.8.3.1 Créer un objet

Au lieu de: INSERT INTO article (titre, contenu) VALUES ('Django', 'cours')
article = Article(titre="Django", contenu="cours"

article.save()
Ou en une ligne :
Article.objects.create(titre="Mon titre", contenu="Mon contenu")

2.8.3.2 Lire des données

Récupérer tous les articles

tous_les_articles = Article.objects.all()

Récupérer un article spécifique

article = Article.objects.get(id=1)
Filtrer les articles
articles_publies = Article.objects.filter(publie=True)

articles_recentes = Article.objects.filter(date_publication_year=2023)

Articles triés par date

articles_ordonnes = Article.objects.all().order_by('-date_publication')

2.8.3.3 Mettre a jour

article = Article.objects.get(id=1)
article.titre = "Nouveau titre"

article.save()

2.8.3.4 Supprimer

article = Article.objects.get(id=1)
article.delete()

18

Framework Python-Django Pr. Sathi - ESTC

2.8.4 Relations entre modeles

Django gere trois types de relations :

1. ForeignKey : Une relation plusieurs-a-un (plusieurs articles pour un auteur).
2. ManyToManyField : Une relation plusieurs-a-plusieurs (un article peut avoir plusieurs
tags, un tag peut étre sur plusieurs articles).

3. OneToOneField : Une relation un-a-un (un utilisateur a un profil).

2.9 L’INTERFACE D’ADMINISTRATION

2.9.1 Une fonctionnalité révolutionnaire

L’interface d’admin de Django est générée automatiquement a partir de vos modeles. En quelques
lignes de code, vous obtenez une interface compléte pour gérer vos données.

2.9.2 Activer Padmin pour un modeéle

Dans admin.py de votre application :

GNU nano 7.2 blog/admin.py
from django.contrib import admin

Register your models here.

from .models import Article

admin.site.register(Article)

Et voila! Vous pouvez maintenant créer, lire, mettre a jour et supprimer des articles via l'interface
d’admin & ’adresse /admin.

2.9.3 Créer un superutilisateur

Pour accéder a ’admin, vous avez besoin d’un compte administrateur :

python manage.py createsuperuser

Suivez les instructions pour créer votre compte, puis allez sur /admin pour vous connecter.

19

Framework Python-Django Pr. Sathi - ESTC

5] | sSite administration | Django ‘x = + v n G &

[l
Il

O ¢« - C O [http://127.0.0.1:8000/admin/ B 1y + &

Django administration

WELCOME, ADMIN. VIEW SITE { CHANGE PASSWORD / LOG OUT O

Site administration

AUTHENTICATION AND AUTHORIZATION

Recent actions

Groups +add ¢ Change

Users +Add ¢ Change My actions

None available

Articles + Add @ Change

2.10 AUTHENTIFICATION ET SECURITE

2.10.1 Le systeme d’authentification intégré
Django inclut un systéme d’authentification complet :

— Inscription et connexion des utilisateurs.
— Gestion des mots de passe (hachés de maniere sécurisée).
— Permissions et groupes.

— Sessions utilisateur.

2.10.2 Utiliser ’authentification dans les vues

Vérifier si un utilisateur est connecté :

def ma_vue(request):
if request.user.is_authenticated:
Utilisateur connecté
return HttpResponse(f"Bonjour {request.user.usernamel}!")
else:
Utilisateur non connecté

return HttpResponse("Veuillez vous connecter.")

2.10.3 Les permissions
Django crée automatiquement des permissions pour chaque modele :

— app.add_modele : permission d’ajouter.
— app.change_modele : permission de modifier.
— app.delete_modele : permission de supprimer.

— app.view_modele : permission de voir.

20

Framework Python-Django Pr. Sathi - ESTC

Vérifier une permission :

if request.user.has perm('blog.add_article'):

L'utilisateur peut ajouter des articles

2.10.4 La protection CSRF

CSRF (Cross-Site Request Forgery) est une attaque ot un site malveillant essaie de faire exécuter

des actions & un utilisateur connecté sans son consentement.

Django protege contre cela avec un jeton CSRF. Dans vos templates, incluez toujours {%
csrf_token %} dans les formulaires POST :

<form method="post">
{% csrf_token %}
<I-- Vos champs de formulaire ici -->
<input type='"submit" value="Envoyer">
</form>

2.11 PAGINATION - GERER LES LONGUES LISTES

2.11.1 Pourquoi paginer ?
Imaginez un site avec 10000 articles. Si vous affichez tous les articles sur une méme page :

— La page mettra tres longtemps a charger.
— L’expérience utilisateur sera mauvaise.

— Le référencement (SEO) en souffrira.

La solution : diviser les résultats en plusieurs pages.

2.11.2 Mise en ceuvre de la pagination

Dans votre vue :

from django.core.paginator import Paginator
def liste_articles(request):
articles = Article.objects.filter(publie=True)

paginator = Paginator(articles, 10) # 10 articles par page

page_number = request.GET.get('page')
page_obj = paginator.get_page(page_number)

return render (request, 'articles/liste.html', {'page_obj': page_objl})

21

Framework Python-Django Pr. Sathi - ESTC

Dans votre template :

{% for article in page_obj %}
<!-- Afficher chaque article -->
{% endfor %}

<!-- Liens de pagination -->
<div class="pagination">
{% if page_obj.has_previous %}
Premiére
Précédente
{)% endif %2}

Page {{ page_obj.number }} sur {{ page_obj.paginator.num_pages }}

{% if page_obj.has next %}
Suivante
Derniére
{% endif %}
</div>

2.12 MIDDLEWARE; LE SYSTEME DE FILTRES

2.12.1 Qu’est-ce qu’un middleware ?

Le middleware est une couche intermédiaire qui traite les requétes et les réponses. C’est comme

une série de filtres que traverse chaque requéte.

2.12.2 Exemples de middleware intégrés

— AuthenticationMiddleware : Ajoute 1'objet user a chaque requéte.
— SecurityMiddleware : Ajoute des en-tétes de sécurité.
— CsrfViewMiddleware : Vérifie les tokens CSRF.

— SessionMiddleware : Gere les sessions utilisateur.

2.12.3 Comment c¢a fonctionne ?

Quand une requéte arrive :

1. Elle passe par tous les middleware (dans I'ordre).
2. Elle arrive a la vue.
3. La réponse repasse par tous les middleware (dans l'ordre inverse).

22

Framework Python-Django

Pr. Safthi - ESTC

HttpRequest

[

~
s

HttpResponse

>
g
~
>
-
-’

N
3
~

1
3

CommonMiddleware

\

N
.
~

O
s

s

SessionMiddleware

I

CsrfviewMiddleware

1slonbax ssaooad

MmaTA sssogad

AuthenticationMiddlewar

process lexception

MessageMiddleware

process template response

|
P

progess_response
| DDA TV TR TNVAL)

Z view function }

2.12.4 Créer son propre middleware

Un middleware simple pour logger les requétes :

def

def

class LoggingMiddleware:

__init__(self, get_response):

self.get response = get_response

__call (self, request):

Code exécuté avant la vue

print (f"Requéte recue: {request.pathl}")

response = self.get_response(request)

Code exécuté aprés la vue

print (f"Réponse envoyée avec statut: {response.status_code}")

return response

Ajoutez-le ensuite dans settings.py :

MIDDLEWARE = [

#

'monapp.middleware.LoggingMiddleware',

23

Framework Python-Django Pr. Sathi - ESTC

3 CHAPITRE 3 : DJANGO REST FRAMEWORK,
CREER DES APIS RESTFUL

3.1 POURQUOI CREER UNE API?

Imaginez que vous développez une application mobile pour votre site web. L’application mobile

ne peut pas exécuter le code Python de Django directement. Elle a besoin d’un moyen pour :

— Récupérer des données depuis votre base de données.
— Envoyer de nouvelles données (comme un nouvel article ou un commentaire).

— Mettre a jour ou supprimer des données existantes.

Une API (Application Programming Interface) est comme un serveur dans un restaurant. Vous
(Papplication mobile) donnez une commande, et le serveur (’API) va chercher ce que vous avez

demandé dans la cuisine (la base de données) et vous le rapporte.

3.2 QU’EST-CE QUE REST?

REST (Representational State Transfer) est un style d’architecture pour les APIs. C’est une

série de regles que suivent beaucoup d’APIs modernes :

1. Utilise HT'TP proprement : Chaque type d’action correspond a une méthode HTTP :

— GET : Récupérer des données
— POST : Créer de nouvelles données
— PUT : Mettre a jour des données existantes
— DELETE : Supprimer des données
2. Sans état (stateless) : Chaque requéte contient toute 'information nécessaire. Le serveur
ne garde pas de mémoire de I’état du client entre les requétes.
3. Ressources identifiables par URL : Chaque élément (utilisateur, article, commentaire) a

sa propre URL.

24

Framework Python-Django Pr. Sathi - ESTC

@——

ey /articles
POST .
/getarticles/1
bl /deletearticle/2
PUT
o —
Server
{
article_id : 1,
title: “Django”,
content: “cours pour licence...”
1

3.3 POURQUOI DJANGO REST FRAMEWORK (DRF)?

DRF est a ’API ce que Django est au site web traditionnel. C’est une boite a outils complete

pour créer des APIs RESTful avec Django.

Sans DRF, créer une API simple pour gérer des articles ressemblerait a :

from django.http import JsonResponse
from .models import Article

import json

def api_articles(request):
if request.method == 'GET':
articles = Article.objects.all()
data = []
for article in articles:
data.append ({
"id': article.id,
'titre': article.titre,
'contenu': article.contenu
i9)

return JsonResponse(data, safe=False)

elif request.method == 'POST':
data = json.loads(request.body)
article = Article.objects.create(
titre=datal['titre'],

25

Framework Python-Django Pr. Sathi - ESTC

contenu=datal'contenu']

)

return JsonResponse({'id': article.id}, status=201)

Avec DRF, le méme code devient :

from rest_framework import serializers, viewsets

from .models import Article

class ArticleSerializer(serializers.ModelSerializer):
class Meta:
model = Article
fields = '__all '
class ArticleViewSet(viewsets.ModelViewSet) :
queryset = Article.objects.all()

serializer class = ArticleSerializer

Et DRF géneére automatiquement toutes les URLs nécessaires !

3.4 LES COMPOSANTS PRINCIPAUX DE DRF

3.4.1 Les Serializers

Les serializers sont comme les formulaires de Django, mais pour les données JSON. Ils font deux

choses :

— Sérialisation : Convertir un objet Python (comme un modele Article) en JSON.

— Désérialisation : Convertir du JSON en objet Python.

Exemple de serializer :

from rest_framework import serializers

from .models import Article, Commentaire

class CommentaireSerializer(serializers.ModelSerializer):

auteur = serializers.ReadOnlyField(source='auteur.username')

class Meta:
model = Commentaire

fields = ['id', 'contenu', 'auteur', 'date creation']

class ArticleSerializer(serializers.ModelSerializer):

Relation avec les commentaires

26

Framework Python-Django Pr. Sathi - ESTC

commentaires = CommentaireSerializer (many=True, read_only=True)

Champ calculé

nombre_commentaires = serializers.SerializerMethodField()

class Meta:
model = Article
fields = ['id', 'titre', 'contenu', 'date_publication',

'auteur', 'commentaires', 'nombre commentaires']

def get nombre_commentaires(self, obj):

return obj.commentaires.count ()

def validate titre(self, value):
"""Validation personnalisée"""
if len(value) < 10:
raise serializers.ValidationError(
"Le titre doit faire au moins 10 caractéres"

)

return value

3.4.2 Les Views (vues) de ’API

DRF offre plusieurs types de vues, du plus simple au plus complexe :

3.4.2.1 APIView (la plus basique)

from rest_framework.views import APIView
from rest_framework.response import Response
from rest_framework import status

from .models import Article

from .serializers import ArticleSerializer

class ListeArticles(APIView):
def get(self, request):
articles = Article.objects.all()
serializer = ArticleSerializer(articles, many=True)

return Response(serializer.data)

def post(self, request):
serializer = ArticleSerializer(data=request.data)
if serializer.is valid():

serializer.save()

27

Framework Python-Django Pr. Sathi - ESTC

return Response(serializer.data, status=status.HTTP_201 CREATED)
return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST)

3.4.2.2 ViewSets (le plus puissant)

Les ViewSets combinent plusieurs actions dans une seule classe :

from rest_framework import viewsets, permissions, filters
from rest_framework.decorators import action

from rest_framework.response import Response

from .models import Article

from .serializers import ArticleSerializer

class ArticleViewSet(viewsets.ModelViewSet):
queryset = Article.objects.all()
serializer class = ArticleSerializer
permission_classes = [permissions.IsAuthenticatedOrReadOnly]
filter backends

[filters.SearchFilter, filters.OrderingFilter]
search fields = ['titre', 'contenu']

ordering fields = ['date_publication', 'titre']

Action personnalisée: /api/articles/{id}/publier/
O@action(detail=True, methods=['post'])
def publier(self, request, pk=None):

article = self.get_object()

article.publie = True

article.save()

return Response({'status': 'article publié'})

Action sur la collection: /api/articles/articles_recents/
O@action(detail=False)
def articles_recents(self, request):
articles = Article.objects.filter(
date_publication__gte='2023-01-01"
) [:10]

serializer = self.get_serializer(articles, many=True)

return Response(serializer.data)

3.4.3 Les Routers

Les routers génerent automatiquement les URLs pour vos ViewSets :

28

Framework Python-Django Pr. Sathi - ESTC

from rest_framework.routers import DefaultRouter

from .views import ArticleViewSet, AuteurViewSet

router = DefaultRouter()
router.register(r'articles', ArticleViewSet)

router.register(r'auteurs', AuteurViewSet)

urlpatterns = router.urls

Cela crée automatiquement :

— GET /api/articles/ : Liste tous les articles.

— POST /api/articles/ : Crée un nouvel article.

— GET /api/articles/{id}/ : Détail d'un article.

— PUT /api/articles/{id}/ : Met a jour un article.

— DELETE /api/articles/{id}/ : Supprime un article.

— POST /api/articles/{id}/publier/ : Notre action personnalisée.

4 CHAPITRE 4 : TESTS AVANCES; TESTS D’INTE-
GRATION ET TESTS DE PERFORMANCE

4.1 POURQUOI TESTER SON CODE?

Imaginez que vous construisez une chaise. Vous pourriez la construire sans la tester, et espérer
qu’elle supporte le poids; ou bien la construire, puis demander a quelqu’un de s’asseoir dessus

pour voir si elle tient.

Les tests automatisés, ¢’est comme avoir une machine qui teste automatiquement chaque chaise
b
que vous fabriquez. Si vous changez quelque chose (un nouveau type de vis, un autre bois), la

machine reteste immédiatement pour s’assurer que la chaise tient toujours.

4.2 LES DIFFERENTS TYPES DE TESTS
4.2.1 Tests unitaires
Testent une petite unité de code en isolation (une fonction, une méthode).

Exemple : Tester une fonction qui calcule le total d’'une commande.

def calculer_ total(articles):

return sum(article.prix for article in articles)

Test unitaire
def test calculer total():

29

Framework Python-Django Pr. Sathi - ESTC

articles = [Article(prix=10), Article(prix=20)]

assert calculer total(articles) == 30

4.2.2 Tests d’intégration

Testent comment différentes parties du systeme fonctionnent ensemble.

Exemple : Tester qu’un utilisateur peut se connecter, créer un article, et le voir apparaitre sur
le site.

4.2.3 Tests de performance

Testent si 'application est assez rapide sous charge.

Exemple : Vérifier que la page d’accueil se charge en moins de 2 secondes méme avec 10 000

utilisateurs connectés.

4.3 EXECUTER LES TESTS

Tous les tests

python manage.py test

Tests d'une application spécifique

python manage.py test monapp

Tests d'une classe spécifique

python manage.py test monapp.tests.BloglntegrationTest

Tests d'une méthode spécifique

python manage.py test monapp.tests.BloglntegrationTest.test_flux_complet_visiteur

Avec verbosité

python manage.py test -v 2

Garder la base de données de test entre les runs (plus rapide)

python manage.py test --keepdb

Les tests ne sont pas un luxe, mais une nécessité. Ils vous permettent de :

Dormir tranquille : Savoir que vos modifications ne cassent rien.
Refactoriser en confiance : Changer le code sans peur.
Documenter le comportement : Les tests montrent comment le code est censé fonctionner.

Détecter les régressions : Quand un bug revient, vos tests le détectent.

AR

Améliorer la qualité : Ecrire des tests vous force a écrire du code plus modulaire et
testable.

30

Framework Python-Django Pr. Sathi - ESTC

Commencez par tester les fonctionnalités critiques, puis étendez progressivement votre couverture

de tests. Un bon objectif est d’atteindre 80% de couverture de code.

Une application bien testée est une application qui dure dans le temps. Les tests sont votre
filet de sécurité quand vous modifiez du code, et votre assurance qualité avant de déployer en

production.

4.4 CONCLUSION ET PERSPECTIVES

Django est plus qu’un outil technique. C’est une philosophie de développement qui vous apprend
a structurer vos pensées, a prioriser la sécurité et a écrire du code maintenable. Ces compétences

sont, transférables a n’importe quel autre framework ou langage.

4.4.1 Ressources pour continuer

Documentation officielle : https://docs.djangoproject.com /fr/

31

	CHAPITRE 1: INTRODUCTION AU FRAMEWORK DJANGO
	CONTEXTE ET DÉFINITIONS FONDAMENTALES
	ARCHITECTURE MVT - LE CŒUR DE DJANGO
	INSTALLATION ET PREMIERS PAS
	LES COMPOSANTS CLÉS EXPLIQUÉS
	LE LANGAGE DE TEMPLATES DJANGO (DTL)

	CHAPITRE 2: LES APPLICATIONS DJANGO, MODULARITÉ ET RÉUTILISATION
	POURQUOI DÉCOUPER EN APPLICATIONS?
	PROJET vs APPLICATION: LA DIFFÉRENCE
	CRÉER UNE APPLICATION: LA COMMANDE STARAPP
	ENREGISTRER L'APPLICATION DANS LE PROJET
	EXEMPLE COMPLET: CRÉATION D'UNE APPLICATION BLOG
	BONNES PRATIQUES POUR LES APPLICATIONS
	LES APPLICATIONS FOURNIES PAR DJANGO
	L'ORM DJANGO: LA BASE DE DONNÉES SANS SQL
	L'INTERFACE D'ADMINISTRATION
	AUTHENTIFICATION ET SÉCURITÉ
	PAGINATION - GÉRER LES LONGUES LISTES
	MIDDLEWARE ; LE SYSTÈME DE FILTRES

	CHAPITRE 3: DJANGO REST FRAMEWORK, CRÉER DES APIS RESTFUL
	POURQUOI CRÉER UNE API?
	QU'EST-CE QUE REST?
	POURQUOI DJANGO REST FRAMEWORK (DRF)?
	LES COMPOSANTS PRINCIPAUX DE DRF

	CHAPITRE 4: TESTS AVANCÉS; TESTS D'INTÉGRATION ET TESTS DE PERFORMANCE
	POURQUOI TESTER SON CODE?
	LES DIFFÉRENTS TYPES DE TESTS
	EXÉCUTER LES TESTS
	CONCLUSION ET PERSPECTIVES

